skglm.penalties.SLOPE#

class skglm.penalties.SLOPE(alphas)[source]#

Sorted L-One Penalized Estimation (SLOPE) penalty.

References

[1]

M. Bogdan, E. van den Berg, C. Sabatti, W. Su, E. Candes “SLOPE - Adaptive Variable Selection via Convex Optimization”, The Annals of Applied Statistics 9 (3): 1103-40 https://doi.org/10.1214/15-AOAS842

Attributes:
alphasarray, shape (n_features,)

Contain regularization levels for every feature. When alphas contain a single unique value, SLOPE is equivalent to the ``L1``penalty.

__init__(alphas)[source]#

Methods

__init__(alphas)

generalized_support(w)

Return a mask which is True for coefficients in the generalized support.

get_spec()

Specify the numba types of the class attributes.

is_penalized(n_features)

Return a binary mask with the penalized features.

params_to_dict()

Get the parameters to initialize an instance of the class.

prox_1d(value, stepsize, j)

prox_vec(x, stepsize)

subdiff_distance(w, grad, ws)

value(w)

Compute the value of SLOPE at w.