skglm.datafits.Cox#
- class skglm.datafits.Cox(use_efron=False)[source]#
Cox datafit for survival analysis.
Refer to Mathematics behind Cox datafit for details.
- Parameters:
- use_efronbool, default=False
If
True
uses Efron estimate to handle tied observations.
- Attributes:
- T_indicesarray-like, shape (n_samples,)
Indices of observations with the same occurrence times stacked horizontally as
[group_1, group_2, ...]
in ascending order. It is initialized with the.initialize
method (orinitialize_sparse
for sparseX
).- T_indptrarray-like, (np.unique(tm) + 1,)
Array where two consecutive elements delimit a group of observations having the same occurrence times.
- H_indicesarray-like, shape (n_samples,)
Indices of uncensored observations with the same occurrence times stacked horizontally as
[group_1, group_2, ...]
in ascending order. It is initialized when calling the.initialize
method (orinitialize_sparse
for sparseX
) whenuse_efron=True
.- H_indptrarray-like, shape (np.unique(tm[s != 0]) + 1,)
Array where two consecutive elements delimits a group of uncensored observations having the same occurrence time.
Methods
__init__
([use_efron])get_global_lipschitz
(X, y)get_global_lipschitz_sparse
(X_data, ...)get_spec
()Specify the numba types of the class attributes.
gradient
(X, y, Xw)Compute gradient of the datafit.
gradient_sparse
(X_data, X_indptr, X_indices, ...)Compute gradient of the datafit in case
X
is sparse.initialize
(X, y)Initialize the datafit attributes.
initialize_sparse
(X_data, X_indptr, X_indices, y)Initialize the datafit attributes in sparse dataset case.
params_to_dict
()Get the parameters to initialize an instance of the class.
raw_grad
(y, Xw)Compute gradient of datafit w.r.t.
raw_hessian
(y, Xw)Compute a diagonal upper bound of the datafit's Hessian w.r.t.
value
(y, w, Xw)Compute the value of the datafit.