skglm.penalties.SCAD#
- class skglm.penalties.SCAD(alpha, gamma)[source]#
Smoothly Clipped Absolute Deviation.
Notes
With `x >= 0`:
`"pen"(x) = { (alpha x , if \ \ \ \ \ \ \ \ \ \ x <= alpha), (2 alpha gamma x - x^2 - alpha^2 / 2 (gamma - 1) , if alpha \ \ < x <= alpha gamma), (alpha^2 (gamma + 1) / 2 , if alpha gamma < x ) :}``"value" = sum_(j=1)^(n_"features") "pen"(abs(w_j))`Methods
__init__
(alpha, gamma)generalized_support
(w)Return a mask with non-zero coefficients.
get_spec
()Specify the numba types of the class attributes.
is_penalized
(n_features)Return a binary mask with the penalized features.
params_to_dict
()Get the parameters to initialize an instance of the class.
prox_1d
(value, stepsize, j)Compute the proximal operator of SCAD penalty.
subdiff_distance
(w, grad, ws)Compute distance of negative gradient to the subdifferential at w.
value
(w)Compute the value of the SCAD penalty at w.