skglm.CoxEstimator#
- class skglm.CoxEstimator(alpha=1.0, l1_ratio=0.7, method='efron', tol=0.0001, max_iter=50, verbose=False)[source]#
Elastic Cox estimator with Efron and Breslow estimate.
Refer to Mathematics behind Cox datafit for details about the datafit expression. The data convention for the estimator is
X
the design matrix withn_features
predictorsy
a two-column array where the firsttm
is of event time occurrences and the seconds
is of censoring.
For L2-regularized Cox (
l1_ratio=0.
) LBFGS is the used solver, otherwise it is ProxNewton.- Parameters:
- alphafloat, optional
Penalty strength. It must be strictly positive.
- l1_ratiofloat, default=0.5
The ElasticNet mixing parameter, with
0 <= l1_ratio <= 1
. Forl1_ratio = 0
the penalty is an L2 penalty.For l1_ratio = 1
it is an L1 penalty. For0 < l1_ratio < 1
, the penalty is a combination of L1 and L2.- method{‘efron’, ‘breslow’}, default=’efron’
The estimate used for the Cox datafit. Use
efron
to handle tied observations.- tolfloat, optional
Stopping criterion for the optimization.
- max_iterint, optional
The maximum number of iterations to solve the problem.
- verbosebool or int
Amount of verbosity.
- Attributes:
- coef_array, shape (n_features,)
Parameter vector of Cox regression.
- stop_crit_float
The value of the stopping criterion at convergence.
Methods
__init__
([alpha, l1_ratio, method, tol, ...])fit
(X, y)Fit Cox estimator.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the linear model.
set_params
(**params)Set the parameters of this estimator.