skglm.datafits.Huber#
- class skglm.datafits.Huber(delta)[source]#
Huber datafit.
The datafit reads:
`1 / n_"samples" sum_(i=1)^(n_"samples") f(y_i - (Xw)_i)`where `f` is the Huber function:
`f(x) = {(1/2 x^2 , if x <= delta), (delta abs(x) - 1/2 delta^2, if x > delta):}`- Attributes:
- deltafloat
Threshold hyperparameter.
Methods
__init__
(delta)full_grad_sparse
(X_data, X_indptr, ...)get_global_lipschitz
(X, y)get_global_lipschitz_sparse
(X_data, ...)get_lipschitz
(X, y)get_lipschitz_sparse
(X_data, X_indptr, ...)get_spec
()Specify the numba types of the class attributes.
gradient_scalar
(X, y, w, Xw, j)gradient_scalar_sparse
(X_data, X_indptr, ...)initialize
(X, y)Pre-computations before fitting on X and y.
initialize_sparse
(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
intercept_update_step
(y, Xw)params_to_dict
()Get the parameters to initialize an instance of the class.
value
(y, w, Xw)Value of datafit at vector w.