skglm.experimental.Pinball#
- class skglm.experimental.Pinball(quantile_level)[source]#
Pinball datafit.
The datafit reads:
sum_i quantile_level * max(y_i - Xw_i, 0) + (1 - quantile_level) * max(Xw_i - y_i, 0)
with
quantile_levelin [0, 1].- Parameters:
- quantile_levelfloat
Quantile level must be in [0, 1]. When
quantile_level=0.5, the datafit becomes a Least Absolute Deviation (LAD) datafit.
Methods
__init__(quantile_level)get_spec()Specify the numba types of the class attributes.
initialize(X, y)Pre-computations before fitting on X and y.
initialize_sparse(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
params_to_dict()Get the parameters to initialize an instance of the class.
prox(w, step, y)Prox of
step * pinball.prox_conjugate(z, step, y)Prox of
step * pinball^*.subdiff_distance(Xw, z, y)Distance of
zto subdiff of pinball atXw.value(y, w, Xw)Value of datafit at vector w.