skglm.experimental.Pinball#
- class skglm.experimental.Pinball(quantile_level)[source]#
Pinball datafit.
The datafit reads:
sum_i quantile_level * max(y_i - Xw_i, 0) + (1 - quantile_level) * max(Xw_i - y_i, 0)
with
quantile_level
in [0, 1].- Parameters:
- quantile_levelfloat
Quantile level must be in [0, 1]. When
quantile_level=0.5
, the datafit becomes a Least Absolute Deviation (LAD) datafit.
Methods
__init__
(quantile_level)get_spec
()Specify the numba types of the class attributes.
initialize
(X, y)Pre-computations before fitting on X and y.
initialize_sparse
(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
params_to_dict
()Get the parameters to initialize an instance of the class.
prox
(w, step, y)Prox of
step * pinball
.prox_conjugate
(z, step, y)Prox of
step * pinball^*
.subdiff_distance
(Xw, z, y)Distance of
z
to subdiff of pinball atXw
.value
(y, w, Xw)Value of datafit at vector w.