skglm.experimental.SqrtLasso#
- class skglm.experimental.SqrtLasso(alpha=1.0, max_iter=100, max_pn_iter=100, p0=10, tol=0.0001, verbose=0)[source]#
 Square root Lasso estimator based on Prox Newton solver.
The optimization objective for square root Lasso is:
`||y - Xw||_2 + alpha ||w||_1`- Parameters:
 - alphafloat, default 1
 Penalty strength.
- max_iterint, default 20
 Maximum number of outer iterations.
- max_pn_iterint, default 1000
 Maximum number of prox Newton iterations on each subproblem.
- p0int, default 10
 Minimum number of features to be included in the working set.
- tolfloat, default 1e-4
 Tolerance for convergence.
- verbosebool, default False
 Amount of verbosity. 0/False is silent.
Methods
__init__([alpha, max_iter, max_pn_iter, p0, ...])fit(X, y)Fit the model according to the given training data.
get_metadata_routing()Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
path(X, y[, alphas, eps, n_alphas])Compute Lasso path.
predict(X)Predict using the linear model.
score(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_params(**params)Set the parameters of this estimator.
set_score_request(*[, sample_weight])Request metadata passed to the
scoremethod.