skglm.datafits.Poisson#
- class skglm.datafits.Poisson[source]#
Poisson datafit.
The datafit reads:
`1 / n_"samples" sum_(i=1)^(n_"samples") (exp((Xw)_i) - y_i (Xw)_i)`Notes
The class is jit compiled at fit time using Numba compiler. This allows for faster computations.
Methods
__init__()full_grad_sparse(X_data, X_indptr, ...)get_spec()Specify the numba types of the class attributes.
gradient_scalar(X, y, w, Xw, j)gradient_scalar_sparse(X_data, X_indptr, ...)initialize(X, y)Pre-computations before fitting on X and y.
initialize_sparse(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
intercept_update_step(y, Xw)params_to_dict()Get the parameters to initialize an instance of the class.
raw_grad(y, Xw)Compute gradient of datafit w.r.t
Xw.raw_hessian(y, Xw)Compute Hessian of datafit w.r.t
Xw.value(y, w, Xw)Value of datafit at vector w.