skglm.penalties.MCPenalty#

class skglm.penalties.MCPenalty(alpha, gamma, positive=False)[source]#

Minimax Concave Penalty (MCP), a non-convex sparse penalty.

Notes

With `x >= 0`:

`"pen"(x) = {(alpha x - x^2 / (2 gamma), if x <= alpha gamma), (gamma alpha^2 / 2 , if x > alpha gamma):}`
`"value" = sum_(j=1)^(n_"features") "pen"(abs(w_j))`
__init__(alpha, gamma, positive=False)[source]#

Methods

__init__(alpha, gamma[, positive])

alpha_max(gradient0)

Return penalization value for which 0 is solution.

generalized_support(w)

Return a mask with non-zero coefficients.

get_spec()

Specify the numba types of the class attributes.

is_penalized(n_features)

Return a binary mask with the penalized features.

params_to_dict()

Get the parameters to initialize an instance of the class.

prox_1d(value, stepsize, j)

Compute the proximal operator of MCP.

subdiff_distance(w, grad, ws)

Compute distance of negative gradient to the subdifferential at w.

value(w)

Value of penalty at vector w.