skglm.penalties.IndicatorBox#

class skglm.penalties.IndicatorBox(alpha)[source]#

Box constraint penalty.

Notes

`bb"1"_([0, alpha]^(n_"samples"))`

where `bb"1"` is the indicator function of the convex set `[0, alpha]^(n_"samples")`

__init__(alpha)[source]#

Methods

__init__(alpha)

generalized_support(w)

Return a mask with coefficients that are neither 0 nor alpha.

get_spec()

Specify the numba types of the class attributes.

is_penalized(n_features)

Return a binary mask with the penalized features.

params_to_dict()

Get the parameters to initialize an instance of the class.

prox_1d(value, stepsize, j)

Compute the proximal operator of the Indicator Box (box projection).

subdiff_distance(w, grad, ws)

Compute distance of negative gradient to the subdifferential at w.

value(w)

Compute the value of the IndicatorBox at w.