skglm.solvers.ProxNewton¶
- class skglm.solvers.ProxNewton(p0=10, max_iter=20, max_pn_iter=1000, tol=0.0001, ws_strategy='subdiff', fit_intercept=True, warm_start=False, verbose=0)[source]¶
Prox Newton solver combined with working sets.
- p0int, default 10
Minimum number of features to be included in the working set.
- max_iterint, default 20
Maximum number of outer iterations.
- max_pn_iterint, default 1000
Maximum number of prox Newton iterations on each subproblem.
- tolfloat, default 1e-4
Tolerance for convergence.
- ws_strategy(‘subdiff’|’fixpoint’), optional
The score used to build the working set.
- fit_interceptbool, default True
If
True
, fits an unpenalized intercept.- verbosebool, default False
Amount of verbosity. 0/False is silent.
References
[1]Massias, M. and Vaiter, S. and Gramfort, A. and Salmon, J. “Dual Extrapolation for Sparse Generalized Linear Models”, JMLR, 2020, https://arxiv.org/abs/1907.05830 code: https://github.com/mathurinm/celer
[2]Johnson, T. B. and Guestrin, C. “Blitz: A principled meta-algorithm for scaling sparse optimization”, ICML, 2015. https://proceedings.mlr.press/v37/johnson15.html code: https://github.com/tbjohns/BlitzL1
- __init__(p0=10, max_iter=20, max_pn_iter=1000, tol=0.0001, ws_strategy='subdiff', fit_intercept=True, warm_start=False, verbose=0)[source]¶
Methods
__init__
([p0, max_iter, max_pn_iter, tol, ...])custom_checks
(X, y, datafit, penalty)Ensure the solver is suited for the datafit + penalty problem.
solve
(X, y, datafit, penalty[, w_init, ...])Solve the optimization problem after validating its compatibility.