skglm.experimental.SmoothQuantileRegressor#

class skglm.experimental.SmoothQuantileRegressor(quantile=0.5, alpha=0.1, delta_init=1.0, delta_final=0.001, n_deltas=10, max_iter=1000, tol=1e-06, verbose=False, fit_intercept=True)[source]#

Quantile regression with progressive smoothing.

__init__(quantile=0.5, alpha=0.1, delta_init=1.0, delta_final=0.001, n_deltas=10, max_iter=1000, tol=1e-06, verbose=False, fit_intercept=True)[source]#

Methods

__init__([quantile, alpha, delta_init, ...])

fit(X, y)

Fit using progressive smoothing: delta_init --> delta_final.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict using the fitted model.

score(X, y[, sample_weight])

Return coefficient of determination on test data.

set_params(**params)

Set the parameters of this estimator.

set_score_request(*[, sample_weight])

Request metadata passed to the score method.