skglm.experimental.SmoothQuantileRegressor#
- class skglm.experimental.SmoothQuantileRegressor(quantile=0.5, alpha=0.1, delta_init=1.0, delta_final=0.001, n_deltas=10, max_iter=1000, tol=1e-06, verbose=False, fit_intercept=True)[source]#
Quantile regression with progressive smoothing.
- __init__(quantile=0.5, alpha=0.1, delta_init=1.0, delta_final=0.001, n_deltas=10, max_iter=1000, tol=1e-06, verbose=False, fit_intercept=True)[source]#
Methods
__init__
([quantile, alpha, delta_init, ...])fit
(X, y)Fit using progressive smoothing: delta_init --> delta_final.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the fitted model.
score
(X, y[, sample_weight])Return coefficient of determination on test data.
set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.