skglm.experimental.Pinball

class skglm.experimental.Pinball(quantile_level)[source]

Pinball datafit.

The datafit reads:

sum_i quantile_level * max(y_i - Xw_i, 0) +
(1 - quantile_level) * max(Xw_i - y_i, 0)

with quantile_level in [0, 1].

Parameters:
quantile_levelfloat

Quantile level must be in [0, 1]. When quantile_level=0.5, the datafit becomes a Least Absolute Deviation (LAD) datafit.

__init__(quantile_level)[source]

Methods

__init__(quantile_level)

get_spec()

Specify the numba types of the class attributes.

initialize(X, y)

Pre-computations before fitting on X and y.

initialize_sparse(X_data, X_indptr, X_indices, y)

Pre-computations before fitting on X and y when X is a sparse matrix.

params_to_dict()

Get the parameters to initialize an instance of the class.

prox(w, step, y)

Prox of step * pinball.

prox_conjugate(z, step, y)

Prox of step * pinball^*.

subdiff_distance(Xw, z, y)

Distance of z to subdiff of pinball at Xw.

value(y, w, Xw)

Value of datafit at vector w.