skglm.datafits.LogisticGroup#
- class skglm.datafits.LogisticGroup(grp_ptr, grp_indices)[source]#
Logistic datafit used with group penalties.
The datafit reads:
`1 / n_"samples" sum_(i=1)^(n_"samples") log(1 + exp(-y_i (Xw)_i))`- Attributes:
- grp_indicesarray, shape (n_features,)
The group indices stacked contiguously
[grp1_indices, grp2_indices, ...].- grp_ptrarray, shape (n_groups + 1,)
The group pointers such that two consecutive elements delimit the indices of a group in
grp_indices.- lipschitzarray, shape (n_groups,)
The lipschitz constants for each group.
Methods
__init__(grp_ptr, grp_indices)full_grad_sparse(X_data, X_indptr, ...)get_global_lipschitz(X, y)get_global_lipschitz_sparse(X_data, ...)get_lipschitz(X, y)get_lipschitz_sparse(X_data, X_indptr, ...)get_spec()Specify the numba types of the class attributes.
gradient(X, y, Xw)gradient_g(X, y, w, Xw, g)gradient_scalar(X, y, w, Xw, j)gradient_scalar_sparse(X_data, X_indptr, ...)gradient_sparse(X_data, X_indptr, X_indices, ...)initialize(X, y)Pre-computations before fitting on X and y.
initialize_sparse(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
intercept_update_step(y, Xw)inverse_link(Xw)Inverse link function (identity by default).
params_to_dict()Get the parameters to initialize an instance of the class.
raw_grad(y, Xw)Compute gradient of datafit w.r.t
Xw.raw_hessian(y, Xw)Compute Hessian of datafit w.r.t
Xw.value(y, w, Xw)Value of datafit at vector w.