skglm.datafits.QuadraticHessian¶
- class skglm.datafits.QuadraticHessian[source]¶
Quadratic datafit where we pass the Hessian A directly.
The datafit reads:
`1 / 2 x^(\top) A x + \langle b, x \rangle`For a symmetric A. Up to a constant, it is the same as a Quadratic, with `A = 1 / (n_"samples") X^(\top)X` and `b = - 1 / n_"samples" X^(\top)y`. When the Hessian is available, this datafit is more efficient than using Quadratic.
Methods
__init__
()get_lipschitz
(A, b)get_spec
()Specify the numba types of the class attributes.
gradient_scalar
(A, b, w, Ax, j)initialize
(X, y)Pre-computations before fitting on X and y.
initialize_sparse
(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
params_to_dict
()Get the parameters to initialize an instance of the class.
value
(b, x, Ax)Value of datafit at vector w.