skglm.datafits.WeightedQuadratic¶
- class skglm.datafits.WeightedQuadratic(sample_weights)[source]¶
Weighted Quadratic datafit to handle sample weights.
The datafit reads:
`1 / (2 xx \sum_(i=1)^(n_"samples") weights_i) \sum_(i=1)^(n_"samples") weights_i (y_i - (Xw)_i)^ 2`- Attributes:
- Xtwyarray, shape (n_features,)
Pre-computed quantity used during the gradient evaluation. Equal to
X.T @ (samples_weights * y)
.- sample_weightsarray, shape (n_samples,)
Weights for each sample.
Methods
__init__
(sample_weights)full_grad_sparse
(X_data, X_indptr, ...)get_global_lipschitz
(X, y)get_global_lipschitz_sparse
(X_data, ...)get_lipschitz
(X, y)get_lipschitz_sparse
(X_data, X_indptr, ...)get_spec
()Specify the numba types of the class attributes.
gradient
(X, y, Xw)gradient_scalar
(X, y, w, Xw, j)gradient_scalar_sparse
(X_data, X_indptr, ...)initialize
(X, y)Pre-computations before fitting on X and y.
initialize_sparse
(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
intercept_update_step
(y, Xw)params_to_dict
()Get the parameters to initialize an instance of the class.
raw_grad
(y, Xw)raw_hessian
(y, Xw)value
(y, w, Xw)Value of datafit at vector w.