skglm.datafits.Gamma#
- class skglm.datafits.Gamma[source]#
Gamma datafit.
The datafit reads:
`1 / n_"samples" \sum_(i=1)^(n_"samples") ((Xw)_i + y_i exp(-(Xw)_i) - 1 - log(y_i))`Notes
The class is jit compiled at fit time using Numba compiler. This allows for faster computations.
Methods
__init__()get_spec()Specify the numba types of the class attributes.
gradient_scalar(X, y, w, Xw, j)initialize(X, y)Pre-computations before fitting on X and y.
initialize_sparse(X_data, X_indptr, X_indices, y)Pre-computations before fitting on X and y when X is a sparse matrix.
intercept_update_step(y, Xw)inverse_link(Xw)Inverse link function (identity by default).
params_to_dict()Get the parameters to initialize an instance of the class.
raw_grad(y, Xw)Compute gradient of datafit w.r.t.
raw_hessian(y, Xw)Compute Hessian of datafit w.r.t.
value(y, w, Xw)Value of datafit at vector w.