skglm.CoxEstimator#
- class skglm.CoxEstimator(alpha=1.0, l1_ratio=0.7, method='efron', tol=0.0001, max_iter=50, verbose=False)[source]#
Elastic Cox estimator with Efron and Breslow estimate.
Refer to Mathematics behind Cox datafit for details about the datafit expression. The data convention for the estimator is
Xthe design matrix withn_featurespredictorsya two-column array where the firsttmis of event time occurrences and the secondsis of censoring.
For L2-regularized Cox (
l1_ratio=0.) LBFGS is the used solver, otherwise it is ProxNewton.- Parameters:
- alphafloat, optional
Penalty strength. It must be strictly positive.
- l1_ratiofloat, default=0.5
The ElasticNet mixing parameter, with
0 <= l1_ratio <= 1. Forl1_ratio = 0the penalty is an L2 penalty.For l1_ratio = 1it is an L1 penalty. For0 < l1_ratio < 1, the penalty is a combination of L1 and L2.- method{‘efron’, ‘breslow’}, default=’efron’
The estimate used for the Cox datafit. Use
efronto handle tied observations.- tolfloat, optional
Stopping criterion for the optimization.
- max_iterint, optional
The maximum number of iterations to solve the problem.
- verbosebool or int
Amount of verbosity.
- Attributes:
- coef_array, shape (n_features,)
Parameter vector of Cox regression.
- stop_crit_float
The value of the stopping criterion at convergence.
Methods
__init__([alpha, l1_ratio, method, tol, ...])fit(X, y)Fit Cox estimator.
get_metadata_routing()Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
predict(X)Predict using the linear model.
set_params(**params)Set the parameters of this estimator.