skglm.solvers.AndersonCD¶
- class skglm.solvers.AndersonCD(max_iter=50, max_epochs=50000, p0=10, tol=0.0001, ws_strategy='subdiff', fit_intercept=True, warm_start=False, verbose=0)[source]¶
Coordinate descent solver with working sets and Anderson acceleration.
- fit_interceptbool
Whether or not to fit an intercept.
- max_iterint, optional
The maximum number of iterations (definition of working set and resolution of problem restricted to features in working set).
- max_epochsint, optional
Maximum number of (block) CD epochs on each subproblem.
- p0int, optional
First working set size.
- tolfloat, optional
The tolerance for the optimization.
- ws_strategy(‘subdiff’|’fixpoint’), optional
The score used to build the working set.
- verbosebool or int, optional
Amount of verbosity. 0/False is silent.
References
[1]Bertrand, Q. and Klopfenstein, Q. and Bannier, P.-A. and Gidel, G. and Massias, M. “Beyond L1: Faster and Better Sparse Models with skglm”, 2022 https://arxiv.org/abs/2204.07826
[2]Bertrand, Q. and Massias, M. “Anderson acceleration of coordinate descent”, AISTATS, 2021 https://proceedings.mlr.press/v130/bertrand21a.html code: https://github.com/mathurinm/andersoncd
- __init__(max_iter=50, max_epochs=50000, p0=10, tol=0.0001, ws_strategy='subdiff', fit_intercept=True, warm_start=False, verbose=0)[source]¶
Methods
__init__
([max_iter, max_epochs, p0, tol, ...])custom_checks
(X, y, datafit, penalty)Ensure the solver is suited for the datafit + penalty problem.
path
(X, y, datafit, penalty[, alphas, ...])solve
(X, y, datafit, penalty[, w_init, ...])Solve the optimization problem after validating its compatibility.