lightning.classification.CDClassifier

class lightning.classification.CDClassifier(loss='squared_hinge', penalty='l2', multiclass=False, C=1.0, alpha=1.0, max_iter=50, tol=0.001, termination='violation_sum', shrinking=True, max_steps='auto', sigma=0.01, beta=0.5, warm_start=False, debiasing=False, Cd=1.0, warm_debiasing=False, selection='cyclic', permute=True, callback=None, n_calls=100, random_state=None, verbose=0, n_jobs=1)[source]

Estimator for learning linear classifiers by (block) coordinate descent.

The objective functions considered take the form

minimize F(W) = C * L(W) + alpha * R(W),

where L(W) is a loss term and R(W) is a penalty term.

Parameters
  • loss (str, 'squared_hinge', 'log', 'modified_huber', 'squared') – The loss function to be used.

  • penalty (str, 'l2', 'l1', 'l1/l2') –

    The penalty to be used.

    • l2: ridge

    • l1: lasso

    • l1/l2: group lasso

  • multiclass (bool) – Whether to use a direct multiclass formulation (True) or one-vs-rest (False). Direct formulations are only available for loss=’squared_hinge’ and loss=’log’.

  • C (float) – Weight of the loss term.

  • alpha (float) – Weight of the penalty term.

  • max_iter (int) – Maximum number of iterations to perform.

  • tol (float) – Tolerance of the stopping criterion.

  • termination (str, 'violation_sum', 'violation_max') – Stopping criterion to use.

  • shrinking (bool) – Whether to activate shrinking or not.

  • max_steps (int or "auto") – Maximum number of steps to use during the line search. Use max_steps=0 to use a constant step size instead of the line search. Use max_steps=”auto” to let CDClassifier choose the best value.

  • sigma (float) – Constant used in the line search sufficient decrease condition.

  • beta (float) – Multiplicative constant used in the backtracking line search.

  • warm_start (bool) – Whether to activate warm-start or not.

  • debiasing (bool) – Whether to refit the model using l2 penalty (only useful if penalty=’l1’ or penalty=’l1/l2’).

  • Cd (float) – Value of C when doing debiasing.

  • warm_debiasing (bool) – Whether to warm-start the model or not when doing debiasing.

  • selection (str, 'cyclic', 'uniform') – Strategy to use for selecting coordinates.

  • permute (bool) – Whether to permute coordinates or not before cycling (only when selection=’cyclic’).

  • callback (callable) – Callback function.

  • n_calls (int) – Frequency with which callback must be called.

  • random_state (RandomState or int) – The seed of the pseudo random number generator to use.

  • verbose (int) – Verbosity level.

  • n_jobs (int) – Number of CPU’s to be used when multiclass=False and when penalty is a non group-lasso penalty. By default use one CPU. If set to -1, use all CPU’s

Examples

The following example demonstrates how to learn a classification model with a multiclass squared hinge loss and an l1/l2 penalty.

>>> from sklearn.datasets import fetch_20newsgroups_vectorized
>>> from lightning.classification import CDClassifier
>>> bunch = fetch_20newsgroups_vectorized(subset="all")
>>> X, y = bunch.data, bunch.target
>>> clf = CDClassifier(penalty="l1/l2",
                       loss="squared_hinge",
                       multiclass=True,
                       max_iter=20,
                       alpha=1e-4,
                       C=1.0 / X.shape[0],
                       tol=1e-3,
                       random_state=0).fit(X, y)
>>> accuracy = clf.score(X, y)

References

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification. Mathieu Blondel, Kazuhiro Seki, and Kuniaki Uehara. Machine Learning, May 2013.

decision_function(X)
fit(X, y)[source]

Fit model according to X and y.

Parameters
  • X (array-like, shape = [n_samples, n_features]) – Training vectors, where n_samples is the number of samples and n_features is the number of features.

  • y (array-like, shape = [n_samples]) – Target values.

Returns

self – Returns self.

Return type

classifier

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

dict

n_nonzero(percentage=False)
predict(X)
property predict_proba
score(X, y, sample_weight=None)

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters
  • X (array-like of shape (n_samples, n_features)) – Test samples.

  • y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.

  • sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.

Returns

score – Mean accuracy of self.predict(X) wrt. y.

Return type

float

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters

**params (dict) – Estimator parameters.

Returns

self – Estimator instance.

Return type

estimator instance