lightning.classification.SAGClassifier¶
- class lightning.classification.SAGClassifier(eta='auto', alpha=1.0, beta=0.0, loss='smooth_hinge', penalty=None, gamma=1.0, max_iter=10, n_inner=1.0, tol=0.001, verbose=0, callback=None, random_state=None)[source]¶
Estimator for learning linear classifiers by SAG.
Solves the following objective:
minimize_w 1 / n_samples * \sum_i loss(w^T x_i, y_i) + alpha * 0.5 * ||w||^2_2
- Parameters
eta (float or {'auto', 'line-search'}, defaults to 'auto') – step size for the gradient updates. If set to ‘auto’, this will calculate a step size based on the input data. If set to ‘line-search’, it will perform a line-search to find the step size based for the current iteration.
alpha (float) – amount of squared L2 regularization
beta (float) – amount of regularization for the penalty term
loss (string) – loss to use in the objective function. Can be one of “smooth_hinge”, “squared_hinge” or “log” (for logistic loss).
gamma (float) – gamma parameter in the “smooth_hinge” loss (not used for other loss functions)
max_iter (int) – maximum number of outer iterations (also known as epochs).
tol (float) – stopping criterion tolerance.
verbose (int) – verbosity level. Set positive to print progress information.
callback (callable or None) – if given, callback(self) will be called on each outer iteration (epoch).
random_state (int or RandomState) – Pseudo-random number generator state used for random sampling.
- decision_function(X)¶
- fit(X, y, sample_weight=None)[source]¶
- Parameters
X (numpy array, sparse matrix or RowDataset of size (n_samples, n_features)) –
y (numpy array of size (n_samples,)) –
sample_weight (numpy array of size (n_samples,), optional) –
- Return type
self
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- n_nonzero(percentage=False)¶
- predict(X)¶
- property predict_proba¶
- score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – Mean accuracy of
self.predict(X)
wrt. y.- Return type
float
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance