lightning.regression.LinearSVR¶
- class lightning.regression.LinearSVR(C=1.0, epsilon=0, loss='epsilon_insensitive', max_iter=1000, tol=0.001, fit_intercept=False, permute=True, warm_start=False, random_state=None, callback=None, n_calls=100, verbose=0)[source]¶
Estimator for learning a linear support vector regressor by coordinate descent in the dual.
- Parameters
loss (str, 'epsilon_insensitive', 'squared_epsilon_insensitive') – The loss function to be used.
C (float) – Weight of the loss term.
epsilon (float) – Parameter of the epsilon-insensitive loss.
max_iter (int) – Maximum number of iterations to perform.
tol (float) – Tolerance of the stopping criterion.
fit_intercept (bool) – Whether to fit an intercept term or not.
warm_start (bool) – Whether to activate warm-start or not.
permute (bool) – Whether to permute coordinates or not before cycling.
callback (callable) – Callback function.
n_calls (int) – Frequency with which callback must be called.
random_state (RandomState or int) – The seed of the pseudo random number generator to use.
verbose (int) – Verbosity level.
- fit(X, y)[source]¶
Fit model according to X and y.
- Parameters
X (array-like, shape = [n_samples, n_features]) – Training vectors, where n_samples is the number of samples and n_features is the number of features.
y (array-like, shape = [n_samples]) – Target values.
- Returns
self – Returns self.
- Return type
regressor
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- n_nonzero(percentage=False)¶
- predict(X)¶
- score(X, y, sample_weight=None)¶
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – \(R^2\) of
self.predict(X)
wrt. y.- Return type
float
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance