lightning.classification.KernelSVC¶
- class lightning.classification.KernelSVC(alpha=1.0, solver='cg', max_iter=50, tol=0.001, kernel='linear', gamma=0.1, coef0=1, degree=4, random_state=None, verbose=0, n_jobs=1)[source]¶
Estimator for learning kernel SVMs by Newton’s method.
- Parameters
alpha (float) – Weight of the penalty term.
solver (str, 'cg', 'dense') –
max_iter (int) – Maximum number of iterations to perform.
tol (float) – Tolerance of the stopping criterion.
kernel ("linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed") – Kernel to use. Default: “linear”
degree (int, default=3) – Degree for poly, rbf and sigmoid kernels. Ignored by other kernels.
gamma (float, optional) – Kernel coefficient for rbf and poly kernels. Default: 1/n_features. Ignored by other kernels.
coef0 (float, optional) – Independent term in poly and sigmoid kernels. Ignored by other kernels.
random_state (RandomState or int) – The seed of the pseudo random number generator to use.
verbose (int) – Verbosity level.
n_jobs (int) – Number of jobs to use to compute the kernel matrix.
Examples
>>> from sklearn.datasets import make_classification >>> from lightning.classification import KernelSVC >>> X, y = make_classification() >>> clf = KernelSVC().fit(X, y) >>> accuracy = clf.score(X, y)
- decision_function(X)[source]¶
Return the decision function for test vectors X.
- Parameters
X (array-like, shape = [n_samples, n_features]) –
- Returns
P – Decision function for X
- Return type
array, shape = [n_classes, n_samples]
- fit(X, y)[source]¶
Fit model according to X and y.
- Parameters
X (array-like, shape = [n_samples, n_features]) – Training vectors, where n_samples is the number of samples and n_features is the number of features.
y (array-like, shape = [n_samples]) – Target values.
- Returns
self – Returns self.
- Return type
classifier
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- n_nonzero(percentage=False)¶
- predict(X)¶
- property predict_proba¶
- score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – Mean accuracy of
self.predict(X)
wrt. y.- Return type
float
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance