lightning.classification.SVRGClassifier¶
- class lightning.classification.SVRGClassifier(eta=1.0, alpha=1.0, loss='smooth_hinge', gamma=1.0, max_iter=10, n_inner=1.0, tol=0.001, verbose=0, callback=None, random_state=None)[source]¶
Estimator for learning linear classifiers by SVRG.
Solves the following objective:
minimize_w 1 / n_samples * \sum_i loss(w^T x_i, y_i) + alpha * 0.5 * ||w||^2_2
- decision_function(X)¶
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- n_nonzero(percentage=False)¶
- predict(X)¶
- property predict_proba¶
- score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – Mean accuracy of
self.predict(X)
wrt. y.- Return type
float
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance