lightning.classification.LinearSVC¶
- class lightning.classification.LinearSVC(C=1.0, loss='hinge', criterion='accuracy', max_iter=1000, tol=0.001, permute=True, shrinking=True, warm_start=False, random_state=None, callback=None, n_calls=100, verbose=0)[source]¶
Estimator for learning linear support vector machine by coordinate descent in the dual.
- Parameters
loss (str, 'hinge', 'squared_hinge') – The loss function to be used.
criterion (str, 'accuracy', 'auc') – Whether to optimize for classification accuracy or AUC.
C (float) – Weight of the loss term.
max_iter (int) – Maximum number of iterations to perform.
tol (float) – Tolerance of the stopping criterion.
shrinking (bool) – Whether to activate shrinking or not.
warm_start (bool) – Whether to activate warm-start or not.
permute (bool) – Whether to permute coordinates or not before cycling.
callback (callable) – Callback function.
n_calls (int) – Frequency with which callback must be called.
random_state (RandomState or int) – The seed of the pseudo random number generator to use.
verbose (int) – Verbosity level.
Examples
The following example demonstrates how to learn a classification model:
>>> from sklearn.datasets import fetch_20newsgroups_vectorized >>> from lightning.classification import LinearSVC >>> bunch = fetch_20newsgroups_vectorized(subset="all") >>> X, y = bunch.data, bunch.target >>> clf = LinearSVC().fit(X, y) >>> accuracy = clf.score(X, y)
- decision_function(X)¶
- fit(X, y)[source]¶
Fit model according to X and y.
- Parameters
X (array-like, shape = [n_samples, n_features]) – Training vectors, where n_samples is the number of samples and n_features is the number of features.
y (array-like, shape = [n_samples]) – Target values.
- Returns
self – Returns self.
- Return type
classifier
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- n_nonzero(percentage=False)¶
- predict(X)¶
- property predict_proba¶
- score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – Mean accuracy of
self.predict(X)
wrt. y.- Return type
float
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance