lightning.classification.FistaClassifier¶
- class lightning.classification.FistaClassifier(C=1.0, alpha=1.0, loss='squared_hinge', penalty='l1', multiclass=False, max_iter=100, max_steps=30, eta=2.0, sigma=1e-05, callback=None, verbose=0)[source]¶
Estimator for learning linear classifiers by FISTA.
The objective functions considered take the form
minimize F(W) = C * L(W) + alpha * R(W),
where L(W) is a loss term and R(W) is a penalty term.
- Parameters
loss (str, 'squared_hinge', 'log', 'modified_huber', 'squared') – The loss function to be used.
penalty (str or Penalty object, {'l2', 'l1', 'l1/l2', 'tv1d', 'simplex'}) –
The penalty or constraint to be used.
l2: ridge
l1: lasso
l1/l2: group lasso
tv1d: 1-dimensional total variation (also known as fused lasso)
simplex: simplex constraint
The method can also take an arbitrary Penalty object, i.e., an instance that implements methods projection regularization method (see file penalty.py)
multiclass (bool) – Whether to use a direct multiclass formulation (True) or one-vs-rest (False).
C (float) – Weight of the loss term.
alpha (float) – Weight of the penalty term.
max_iter (int) – Maximum number of iterations to perform.
max_steps (int) – Maximum number of steps to use during the line search.
sigma (float) – Constant used in the line search sufficient decrease condition.
eta (float) – Decrease factor for line-search procedure. For example, eta=2. will decrease the step size by a factor of 2 at each iteration of the line-search routine.
callback (callable) – Callback function.
verbose (int) – Verbosity level.
- decision_function(X)¶
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- n_nonzero(percentage=False)¶
- predict(X)¶
- property predict_proba¶
- score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – Mean accuracy of
self.predict(X)
wrt. y.- Return type
float
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance