Summary Encoder
- class category_encoders.quantile_encoder.SummaryEncoder(verbose: int = 0, cols: list[str] = None, drop_invariant: bool = False, return_df: bool = True, handle_missing: str = 'value', handle_unknown: str = 'value', quantiles: Sequence[float] = (0.25, 0.75), m: float = 1.0)[source]
Summary Encoding for categorical features.
It’s an encoder designed for creating richer representations by applying quantile encoding for a set of quantiles.
- Parameters:
- verbose: int
integer indicating verbosity of the output. 0 for none.
- quantiles: list
list of floats indicating the statistical quantiles. Each element represent a column
- m: float
this is the “m” in the m-probability estimate. Higher value of m results into stronger shrinking. M is non-negative. 0 for no smoothing.
- cols: list
a list of columns to encode, if None, all string columns will be encoded.
- drop_invariant: bool
boolean for whether or not to drop columns with 0 variance.
- return_df: bool
boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
- handle_missing: str
options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which returns the target quantile.
- handle_unknown: str
options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which returns the target quantile.
Methods
fit(X, y)Fits the encoder according to X and y by fitting the individual encoders.
fit_transform(X[, y])Fit and transform using target.
Deprecated method to get feature names.
Get the names of all input columns present when fitting.
get_feature_names_out([input_features])Returns the names of all transformed / added columns.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
set_params(**params)Set the parameters of this estimator.
set_transform_request(*[, override_return_df])Configure whether metadata should be requested to be passed to the
transformmethod.transform(X[, y, override_return_df])Summary encode new data.
References
[1]Quantile Encoder: Tackling High Cardinality Categorical Features in Regression Problems,
https://link.springer.com/chapter/10.1007%2F978-3-030-85529-1_14 .. [R21e1e6e9fdbe-2] A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems, equation 7, from https://dl.acm.org/citation.cfm?id=507538 .. [R21e1e6e9fdbe-3] On estimating probabilities in tree pruning, equation 1, from https://link.springer.com/chapter/10.1007/BFb0017010 .. [R21e1e6e9fdbe-4] Additive smoothing, from https://en.wikipedia.org/wiki/Additive_smoothing#Generalized_to_the_case_of_known_incidence_rates .. [R21e1e6e9fdbe-5] Target encoding done the right way https://maxhalford.github.io/blog/target-encoding/
- fit(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame) SummaryEncoder[source]
Fits the encoder according to X and y by fitting the individual encoders.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- yarray-like, shape = [n_samples]
Target values.
- Returns:
- selfencoder
Returns self.
- fit_transform(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None)[source]
Fit and transform using target.
This also uses the target for transforming, not only for training.
- get_feature_names() ndarray[source]
Deprecated method to get feature names. Use get_feature_names_out instead.
- get_feature_names_in() ndarray[source]
Get the names of all input columns present when fitting.
These columns are necessary for the transform step.
- get_feature_names_out(input_features=None) ndarray[source]
Returns the names of all transformed / added columns.
Note that in sklearn the get_feature_names_out function takes the feature_names_in as an argument and determines the output feature names using the input. A fit is usually not necessary and if so a NotFittedError is raised. We just require a fit all the time and return the fitted output columns.
- Returns:
- feature_names: np.ndarray
A list with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, override_return_df: bool | None | str = '$UNCHANGED$') SummaryEncoder
Configure whether metadata should be requested to be passed to the
transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed totransformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it totransform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- override_return_dfstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
override_return_dfparameter intransform.
- Returns:
- selfobject
The updated object.
- transform(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, override_return_df: bool = False) DataFrame | ndarray[source]
Summary encode new data.
- Parameters:
- X: data to encode.
- y: optional target information.
- override_return_df: if true return a numpy array instead of a
dataframe regardless of the return_df parameter.
- Returns:
- encoded data.