Ordinal
- class category_encoders.ordinal.OrdinalEncoder(verbose: int = 0, mapping: list[dict[str, str | dict | Series]] | None = None, cols: list[str] = None, drop_invariant: bool = False, return_df: bool = True, handle_unknown: str = 'value', handle_missing: str = 'value')[source]
Encodes categorical features as ordinal, in one ordered feature.
Ordinal encoding uses a single column of integers to represent the classes. An optional mapping dict can be passed in; in this case, we use the knowledge that there is some true order to the classes themselves. Otherwise, the classes are assumed to have no true order and integers are selected at random.
- Parameters:
- verbose: int
integer indicating verbosity of the output. 0 for none.
- cols: list
a list of columns to encode, if None, all string columns will be encoded.
- drop_invariant: bool
boolean for whether or not to drop columns with 0 variance.
- return_df: bool
boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
- mapping: list of dicts
a mapping of class to label to use for the encoding, optional. the dict contains the keys ‘col’ and ‘mapping’. the value of ‘col’ should be the feature name. the value of ‘mapping’ should be a dictionary or pd.Series of ‘original_label’ to ‘encoded_label’. example mapping: [
{‘col’: ‘col1’, ‘mapping’: {None: 0, ‘a’: 1, ‘b’: 2}}, {‘col’: ‘col2’, ‘mapping’: {None: 0, ‘x’: 1, ‘y’: 2}}
]
- handle_unknown: str
options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which will impute the category -1.
- handle_missing: str
options are ‘error’, ‘return_nan’, and ‘value, default to ‘value’, which treat nan as a category at fit time, or -2 at transform time if nan is not a category during fit.
- Attributes:
category_mapping
The underlying category mapping.
Methods
fit
(X[, y])Fits the encoder according to X and y.
fit_transform
(X[, y])Fit to data, then transform it.
Deprecated method to get feature names.
Get the names of all input columns present when fitting.
get_feature_names_out
([input_features])Get the names of all transformed / added columns.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
inverse_transform
(X_in)Perform the inverse transformation to encoded data.
ordinal_encoding
(X_in[, mapping, cols, ...])Ordinal encoding uses a single column of integers to represent the classes.
set_inverse_transform_request
(*[, X_in])Request metadata passed to the
inverse_transform
method.set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, override_return_df])Request metadata passed to the
transform
method.transform
(X[, override_return_df])Perform the transformation to new categorical data.
References
[1]Contrast Coding Systems for Categorical Variables, from
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
[2]Gregory Carey (2003). Coding Categorical Variables, from
http://ibgwww.colorado.edu/~carey/p5741ndir/Coding_Categorical_Variables.pdf
- property category_mapping: list[dict[str, str | dict | Series]] | None
The underlying category mapping.
- fit(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, **kwargs)
Fits the encoder according to X and y.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- yarray-like, shape = [n_samples]
Target values.
- Returns:
- selfencoder
Returns self.
- fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_feature_names() ndarray
Deprecated method to get feature names. Use get_feature_names_out instead.
- get_feature_names_in() ndarray
Get the names of all input columns present when fitting.
These columns are necessary for the transform step.
- get_feature_names_out(input_features=None) ndarray
Get the names of all transformed / added columns.
Note that in sklearn the get_feature_names_out function takes the feature_names_in as an argument and determines the output feature names using the input. A fit is usually not necessary and if so a NotFittedError is raised. We just require a fit all the time and return the fitted output columns.
- Returns:
- feature_names: np.ndarray
A numpy array with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(X_in: ndarray | DataFrame | list | generic | csr_matrix) DataFrame | ndarray [source]
Perform the inverse transformation to encoded data.
Will attempt best case reconstruction, which means it will return nan for handle_missing and handle_unknown settings that break the bijection. We issue warnings when some of those cases occur.
- Parameters:
- X_inarray-like, shape = [n_samples, n_features]
- Returns:
- p: array, the same size of X_in
- static ordinal_encoding(X_in: DataFrame, mapping: list[dict[str, str | dict | Series]] | None = None, cols: list[str] = None, handle_unknown: str = 'value', handle_missing: str = 'value') tuple[DataFrame, list[dict]] [source]
Ordinal encoding uses a single column of integers to represent the classes.
An optional mapping dict can be passed in, in this case we use the knowledge that there is some true order to the classes themselves. Otherwise, the classes are assumed to have no true order and integers are selected at random.
- set_inverse_transform_request(*, X_in: bool | None | str = '$UNCHANGED$') OrdinalEncoder
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_instr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_in
parameter ininverse_transform
.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)
Set output container.
See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, override_return_df: bool | None | str = '$UNCHANGED$') OrdinalEncoder
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- override_return_dfstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
override_return_df
parameter intransform
.
- Returns:
- selfobject
The updated object.
- transform(X: ndarray | DataFrame | list | generic | csr_matrix, override_return_df: bool = False)
Perform the transformation to new categorical data.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
- override_return_dfbool
override self.return_df to force to return a data frame
- Returns:
- parray or DataFrame, shape = [n_samples, n_features_out]
Transformed values with encoding applied.