BaseN

class category_encoders.basen.BaseNEncoder(verbose=0, cols=None, mapping=None, drop_invariant=False, return_df=True, base=2, handle_unknown='value', handle_missing='value')[source]

Base-N encoder encodes the categories into arrays of their base-N representation. A base of 1 is equivalent to one-hot encoding (not really base-1, but useful), a base of 2 is equivalent to binary encoding. N=number of actual categories is equivalent to vanilla ordinal encoding.

Parameters:
verbose: int

integer indicating verbosity of the output. 0 for none.

cols: list

a list of columns to encode, if None, all string columns will be encoded.

drop_invariant: bool

boolean for whether or not to drop columns with 0 variance.

return_df: bool

boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).

base: int

when the downstream model copes well with nonlinearities (like decision tree), use higher base.

handle_unknown: str

options are ‘error’, ‘return_nan’, ‘value’, and ‘indicator’. The default is ‘value’. Warning: if indicator is used, an extra column will be added in if the transform matrix has unknown categories. This can cause unexpected changes in dimension in some cases.

handle_missing: str

options are ‘error’, ‘return_nan’, ‘value’, and ‘indicator’. The default is ‘value’. Warning: if indicator is used, an extra column will be added in if the transform matrix has nan values. This can cause unexpected changes in dimension in some cases.

Attributes:
feature_names_out_

Methods

basen_encode(X_in[, cols])

Basen encoding encodes the integers as basen code with one column per digit.

basen_to_integer(X, cols, base)

Convert basen code as integers.

col_transform(col, digits)

The lambda body to transform the column values

fit(X[, y])

Fits the encoder according to X and y.

fit_transform(X[, y])

Fit to data, then transform it.

get_feature_names_in()

Returns the names of all input columns present when fitting.

get_feature_names_out()

Returns the names of all transformed / added columns.

get_params([deep])

Get parameters for this estimator.

inverse_transform(X_in)

Perform the inverse transformation to encoded data.

set_output(*[, transform])

Set output container.

set_params(**params)

Set the parameters of this estimator.

transform(X[, override_return_df])

Perform the transformation to new categorical data.

calc_required_digits

fit_base_n_encoding

get_feature_names

number_to_base

Parameters:
verbose: int

integer indicating verbosity of output. 0 for none.

cols: list

a list of columns to encode, if None, all string and categorical columns will be encoded.

drop_invariant: bool

boolean for whether or not to drop columns with 0 variance.

return_df: bool

boolean for whether to return a pandas DataFrame from transform and inverse transform (otherwise it will be a numpy array).

handle_missing: str

how to handle missing values at fit time. Options are ‘error’, ‘return_nan’, and ‘value’. Default ‘value’, which treat NaNs as a countable category at fit time.

handle_unknown: str, int or dict of {columnoption, …}.

how to handle unknown labels at transform time. Options are ‘error’ ‘return_nan’, ‘value’ and int. Defaults to None which uses NaN behaviour specified at fit time. Passing an int will fill with this int value.

kwargs: dict.

additional encoder specific parameters like regularisation.

Attributes:
feature_names_out_

Methods

basen_encode(X_in[, cols])

Basen encoding encodes the integers as basen code with one column per digit.

basen_to_integer(X, cols, base)

Convert basen code as integers.

col_transform(col, digits)

The lambda body to transform the column values

fit(X[, y])

Fits the encoder according to X and y.

fit_transform(X[, y])

Fit to data, then transform it.

get_feature_names_in()

Returns the names of all input columns present when fitting.

get_feature_names_out()

Returns the names of all transformed / added columns.

get_params([deep])

Get parameters for this estimator.

inverse_transform(X_in)

Perform the inverse transformation to encoded data.

set_output(*[, transform])

Set output container.

set_params(**params)

Set the parameters of this estimator.

transform(X[, override_return_df])

Perform the transformation to new categorical data.

calc_required_digits

fit_base_n_encoding

get_feature_names

number_to_base

basen_encode(X_in, cols=None)[source]

Basen encoding encodes the integers as basen code with one column per digit.

Parameters:
X_in: DataFrame
cols: list-like, default None

Column names in the DataFrame to be encoded

Returns:
dummiesDataFrame
basen_to_integer(X, cols, base)[source]

Convert basen code as integers.

Parameters:
XDataFrame

encoded data

colslist-like

Column names in the DataFrame that be encoded

baseint

The base of transform

Returns:
numerical: DataFrame
col_transform(col, digits)[source]

The lambda body to transform the column values

fit(X, y=None, **kwargs)

Fits the encoder according to X and y.

Parameters:
Xarray-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

yarray-like, shape = [n_samples]

Target values.

Returns:
selfencoder

Returns self.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns:
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_feature_names_in() List[str]

Returns the names of all input columns present when fitting. These columns are necessary for the transform step.

get_feature_names_out() List[str]

Returns the names of all transformed / added columns.

Returns:
feature_names: list

A list with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!

get_params(deep=True)

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

inverse_transform(X_in)[source]

Perform the inverse transformation to encoded data.

Parameters:
X_inarray-like, shape = [n_samples, n_features]
Returns:
p: array, the same size of X_in
set_output(*, transform=None)

Set output container.

See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.

Parameters:
transform{“default”, “pandas”}, default=None

Configure output of transform and fit_transform.

  • “default”: Default output format of a transformer

  • “pandas”: DataFrame output

  • None: Transform configuration is unchanged

Returns:
selfestimator instance

Estimator instance.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

transform(X, override_return_df=False)

Perform the transformation to new categorical data.

Parameters:
Xarray-like, shape = [n_samples, n_features]
override_return_dfbool

override self.return_df to force to return a data frame

Returns:
parray or DataFrame, shape = [n_samples, n_features_out]

Transformed values with encoding applied.