RankHotEncoder
- class category_encoders.rankhot.RankHotEncoder(verbose: int = 0, cols: list[str] = None, drop_invariant: bool = False, return_df: bool = True, handle_missing: str = 'value', handle_unknown: str = 'value', use_cat_names: bool = False)[source]
Rank Hot Encoder.
The rank-hot encoder is similar to a one-hot encoder, except every feature up to and including the current rank is hot. This is also called thermometer encoding.
- Parameters:
- verbose: int
integer indicating verbosity of the output. 0 for none.
- cols: list
a list of columns to encode, if None, all string columns will be encoded.
- drop_invariant: bool
boolean for whether or not to drop columns with 0 variance.
- use_cat_names: bool
- if True, category values will be included in the encoded column names.
Since this can result in duplicate column names, duplicates are suffixed with ‘#’ symbol until a unique name is generated.
If False, category indices will be used instead of the category values.
- handle_unknown: str
options are ‘error’, ‘value’, ‘return_nan’. The default is ‘value’. ‘value’: If an unknown label occurrs, it is represented as 0 array. ‘error’: If an unknown label occurrs, error message is displayed. ‘return_nan’: If an unknown label occurrs, np.nan is returned in all columns.
- handle_missing: str
options are ‘error’, ‘value’ and ‘return_nan’. The default is ‘value’. Missing value also considered as unknown value in the final data set.
Methods
fit(X[, y])Fits the encoder according to X and y.
fit_transform(X[, y])Fit to data, then transform it.
Generate the mapping for rankhot encoding.
Deprecated method to get feature names.
Get the names of all input columns present when fitting.
get_feature_names_out([input_features])Get the names of all transformed / added columns.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
inverse_transform(X_in)Inverse transformation.
set_inverse_transform_request(*[, X_in])Configure whether metadata should be requested to be passed to the
inverse_transformmethod.set_output(*[, transform])Set output container.
set_params(**params)Set the parameters of this estimator.
set_transform_request(*[, override_return_df])Configure whether metadata should be requested to be passed to the
transformmethod.transform(X[, override_return_df])Perform the transformation to new categorical data.
- fit(X: ndarray | DataFrame | list | generic | csr_matrix, y: list | Series | ndarray | tuple | DataFrame | None = None, **kwargs)
Fits the encoder according to X and y.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- yarray-like, shape = [n_samples]
Target values.
- Returns:
- selfencoder
Returns self.
- fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- generate_mapping() list[dict[str, str | DataFrame]][source]
Generate the mapping for rankhot encoding.
- Returns:
- List of dict containing colnames and their respective encoding.
- get_feature_names() ndarray
Deprecated method to get feature names. Use get_feature_names_out instead.
- get_feature_names_in() ndarray
Get the names of all input columns present when fitting.
These columns are necessary for the transform step.
- get_feature_names_out(input_features=None) ndarray
Get the names of all transformed / added columns.
Note that in sklearn the get_feature_names_out function takes the feature_names_in as an argument and determines the output feature names using the input. A fit is usually not necessary and if so a NotFittedError is raised. We just require a fit all the time and return the fitted output columns.
- Returns:
- feature_names: np.ndarray
A numpy array with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(X_in: DataFrame) DataFrame[source]
Inverse transformation.
This takes encoded data and gives back non-encoded data.
- Parameters:
- X_in: data frame with rank-hot-encoded data.
- Returns:
- non-encoded data as a data frame.
- set_inverse_transform_request(*, X_in: bool | None | str = '$UNCHANGED$') RankHotEncoder
Configure whether metadata should be requested to be passed to the
inverse_transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toinverse_transformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toinverse_transform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- X_instr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_inparameter ininverse_transform.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)
Set output container.
See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, override_return_df: bool | None | str = '$UNCHANGED$') RankHotEncoder
Configure whether metadata should be requested to be passed to the
transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed totransformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it totransform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- override_return_dfstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
override_return_dfparameter intransform.
- Returns:
- selfobject
The updated object.
- transform(X: ndarray | DataFrame | list | generic | csr_matrix, override_return_df: bool = False)
Perform the transformation to new categorical data.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
- override_return_dfbool
override self.return_df to force to return a data frame
- Returns:
- parray or DataFrame, shape = [n_samples, n_features_out]
Transformed values with encoding applied.