Source code for category_encoders.ordinal

"""Ordinal or label encoding"""

import numpy as np
import pandas as pd
import category_encoders.utils as util
import warnings
from typing import Dict, List, Union

__author__ = 'willmcginnis'


[docs]class OrdinalEncoder(util.BaseEncoder, util.UnsupervisedTransformerMixin): """Encodes categorical features as ordinal, in one ordered feature. Ordinal encoding uses a single column of integers to represent the classes. An optional mapping dict can be passed in; in this case, we use the knowledge that there is some true order to the classes themselves. Otherwise, the classes are assumed to have no true order and integers are selected at random. Parameters ---------- verbose: int integer indicating verbosity of the output. 0 for none. cols: list a list of columns to encode, if None, all string columns will be encoded. drop_invariant: bool boolean for whether or not to drop columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). mapping: list of dicts a mapping of class to label to use for the encoding, optional. the dict contains the keys 'col' and 'mapping'. the value of 'col' should be the feature name. the value of 'mapping' should be a dictionary or pd.Series of 'original_label' to 'encoded_label'. example mapping: [ {'col': 'col1', 'mapping': {None: 0, 'a': 1, 'b': 2}}, {'col': 'col2', 'mapping': {None: 0, 'x': 1, 'y': 2}} ] handle_unknown: str options are 'error', 'return_nan' and 'value', defaults to 'value', which will impute the category -1. handle_missing: str options are 'error', 'return_nan', and 'value, default to 'value', which treat nan as a category at fit time, or -2 at transform time if nan is not a category during fit. Example ------- >>> from category_encoders import * >>> import pandas as pd >>> from sklearn.datasets import fetch_openml >>> bunch = fetch_openml(name="house_prices", as_frame=True) >>> display_cols = ["Id", "MSSubClass", "MSZoning", "LotFrontage", "YearBuilt", "Heating", "CentralAir"] >>> y = bunch.target >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)[display_cols] >>> enc = OrdinalEncoder(cols=['CentralAir', 'Heating']).fit(X, y) >>> numeric_dataset = enc.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Id 1460 non-null float64 1 MSSubClass 1460 non-null float64 2 MSZoning 1460 non-null object 3 LotFrontage 1201 non-null float64 4 YearBuilt 1460 non-null float64 5 Heating 1460 non-null int64 6 CentralAir 1460 non-null int64 dtypes: float64(4), int64(2), object(1) memory usage: 80.0+ KB None References ---------- .. [1] Contrast Coding Systems for Categorical Variables, from https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/ .. [2] Gregory Carey (2003). Coding Categorical Variables, from http://ibgwww.colorado.edu/~carey/p5741ndir/Coding_Categorical_Variables.pdf """ prefit_ordinal = False encoding_relation = util.EncodingRelation.ONE_TO_ONE def __init__(self, verbose=0, mapping=None, cols=None, drop_invariant=False, return_df=True, handle_unknown='value', handle_missing='value'): super().__init__(verbose=verbose, cols=cols, drop_invariant=drop_invariant, return_df=return_df, handle_unknown=handle_unknown, handle_missing=handle_missing) self.mapping_supplied = mapping is not None if self.mapping_supplied: mapping = self._validate_supplied_mapping(mapping) self.mapping = mapping @property def category_mapping(self): return self.mapping def _fit(self, X, y=None, **kwargs): # reset mapping in case of refit if not self.mapping_supplied: self.mapping = None _, categories = self.ordinal_encoding( X, mapping=self.mapping, cols=self.cols, handle_unknown=self.handle_unknown, handle_missing=self.handle_missing ) self.mapping = categories def _transform(self, X): X, _ = self.ordinal_encoding( X, mapping=self.mapping, cols=self.cols, handle_unknown=self.handle_unknown, handle_missing=self.handle_missing ) return X
[docs] def inverse_transform(self, X_in): """ Perform the inverse transformation to encoded data. Will attempt best case reconstruction, which means it will return nan for handle_missing and handle_unknown settings that break the bijection. We issue warnings when some of those cases occur. Parameters ---------- X_in : array-like, shape = [n_samples, n_features] Returns ------- p: array, the same size of X_in """ # fail fast if self._dim is None: raise ValueError('Must train encoder before it can be used to inverse_transform data') # first check the type and make deep copy X = util.convert_input(X_in, deep=True) # then make sure that it is the right size if X.shape[1] != self._dim: if self.drop_invariant: raise ValueError(f"Unexpected input dimension {X.shape[1]}, the attribute drop_invariant should " "be False when transforming the data") else: raise ValueError(f'Unexpected input dimension {X.shape[1]}, expected {self._dim}') if not list(self.cols): return X if self.return_df else X.to_numpy() if self.handle_unknown == 'value': for col in self.cols: if any(X[col] == -1): warnings.warn("inverse_transform is not supported because transform impute " f"the unknown category -1 when encode {col}") if self.handle_unknown == 'return_nan' and self.handle_missing == 'return_nan': for col in self.cols: if X[col].isna().any(): warnings.warn("inverse_transform is not supported because transform impute " f"the unknown category nan when encode {col}") for switch in self.mapping: column_mapping = switch.get('mapping') inverse = pd.Series(data=column_mapping.index, index=column_mapping.values) X[switch.get('col')] = X[switch.get('col')].map(inverse).astype(switch.get('data_type')) return X if self.return_df else X.to_numpy()
[docs] @staticmethod def ordinal_encoding(X_in, mapping=None, cols=None, handle_unknown='value', handle_missing='value'): """ Ordinal encoding uses a single column of integers to represent the classes. An optional mapping dict can be passed in, in this case we use the knowledge that there is some true order to the classes themselves. Otherwise, the classes are assumed to have no true order and integers are selected at random. """ return_nan_series = pd.Series(data=[np.nan], index=[-2]) X = X_in.copy(deep=True) if cols is None: cols = X.columns if mapping is not None: mapping_out = mapping for switch in mapping: column = switch.get('col') col_mapping = switch['mapping'] # Convert to object to accept np.nan (dtype string doesn't) # fillna changes None and pd.NA to np.nan X[column] = X[column].astype("object").fillna(np.nan).map(col_mapping) if util.is_category(X[column].dtype): nan_identity = col_mapping.loc[col_mapping.index.isna()].array[0] X[column] = X[column].cat.add_categories(nan_identity) X[column] = X[column].fillna(nan_identity) try: X[column] = X[column].astype(int) except ValueError as e: X[column] = X[column].astype(float) if handle_unknown == 'value': X[column] = X[column].fillna(-1) elif handle_unknown == 'error': missing = X[column].isna() if any(missing): raise ValueError(f'Unexpected categories found in column {column}') if handle_missing == 'return_nan': X[column] = X[column].map(return_nan_series).where(X[column] == -2, X[column]) else: mapping_out = [] for col in cols: nan_identity = np.nan categories = X[col].unique() # make nan last category if pd.isna(categories).any(): categories = [c for c in categories if not pd.isna(c)] + [nan_identity] else: categories = list(categories) if util.is_category(X[col].dtype): # Avoid using pandas category dtype meta-data if possible, see #235, #238. if X[col].dtype.ordered: category_set = set(categories) # convert to set for faster membership checks c.f. #407 categories = [c for c in X[col].dtype.categories if c in category_set] if X[col].isna().any(): categories += [np.nan] index = pd.Series(categories).fillna(nan_identity).unique() data = pd.Series(index=index, data=range(1, len(index) + 1)) if handle_missing == 'value' and ~data.index.isna().any(): data.loc[nan_identity] = -2 elif handle_missing == 'return_nan': data.loc[nan_identity] = -2 mapping_out.append({'col': col, 'mapping': data, 'data_type': X[col].dtype}, ) return X, mapping_out
def _validate_supplied_mapping(self, supplied_mapping: List[Dict[str, Union[str, Dict, pd.Series]]]) -> List[Dict[str, Union[str, pd.Series]]]: """ validate the supplied mapping and convert the actual mapping per column to a pandas series. :param supplied_mapping: mapping as list of dicts. They actual mapping can be either a dict or pd.Series :return: the mapping with all actual mappings being pandas series """ msg = "Invalid supplied mapping, must be of type List[Dict[str, Union[Dict, pd.Series]]]." \ "For an example refer to the documentation" if not isinstance(supplied_mapping, list): raise ValueError(msg) for mapping_el in supplied_mapping: if not isinstance(mapping_el, dict): raise ValueError(msg) if "col" not in mapping_el: raise KeyError("Mapping must contain a key 'col' for each column to encode") if "mapping" not in mapping_el: raise KeyError("Mapping must contain a key 'mapping' for each column to encode") mapping = mapping_el["mapping"] if isinstance(mapping_el, dict): # convert to dict in order to standardise mapping_el["mapping"] = pd.Series(mapping) if "data_type" not in mapping_el: mapping_el["data_type"] = mapping_el["mapping"].index.dtype return supplied_mapping