Summary Encoder
- class category_encoders.quantile_encoder.SummaryEncoder(verbose=0, cols=None, drop_invariant=False, return_df=True, handle_missing='value', handle_unknown='value', quantiles=(0.25, 0.75), m=1.0)[source]
Summary Encoding for categorical features.
It’s an encoder designed for creating richer representations by applying quantile encoding for a set of quantiles.
- Parameters:
- verbose: int
integer indicating verbosity of the output. 0 for none.
- quantiles: list
list of floats indicating the statistical quantiles. Each element represent a column
- m: float
this is the “m” in the m-probability estimate. Higher value of m results into stronger shrinking. M is non-negative. 0 for no smoothing.
- cols: list
a list of columns to encode, if None, all string columns will be encoded.
- drop_invariant: bool
boolean for whether or not to drop columns with 0 variance.
- return_df: bool
boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array).
- handle_missing: str
options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which returns the target quantile.
- handle_unknown: str
options are ‘error’, ‘return_nan’ and ‘value’, defaults to ‘value’, which returns the target quantile.
References
[1]Quantile Encoder: Tackling High Cardinality Categorical Features in Regression Problems, https://link.springer.com/chapter/10.1007%2F978-3-030-85529-1_14
[2]A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems, equation 7, from https://dl.acm.org/citation.cfm?id=507538
[3]On estimating probabilities in tree pruning, equation 1, from https://link.springer.com/chapter/10.1007/BFb0017010
[4]Additive smoothing, from https://en.wikipedia.org/wiki/Additive_smoothing#Generalized_to_the_case_of_known_incidence_rates
[5]Target encoding done the right way https://maxhalford.github.io/blog/target-encoding/
Methods
fit
(X, y)Fits the encoder according to X and y by fitting the individual encoders.
fit_transform
(X[, y])Encoders that utilize the target must make sure that the training data are transformed with:
Returns the names of all input columns present when fitting.
get_feature_names_out
([input_features])Returns the names of all transformed / added columns.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, override_return_df])Request metadata passed to the
transform
method.get_feature_names
transform
- fit(X, y)[source]
Fits the encoder according to X and y by fitting the individual encoders.
- Parameters:
- Xarray-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- yarray-like, shape = [n_samples]
Target values.
- Returns:
- selfencoder
Returns self.
- fit_transform(X, y=None, **fit_params)
- Encoders that utilize the target must make sure that the training data are transformed with:
transform(X, y)
- and not with:
transform(X)
- get_feature_names_in() List[str] [source]
Returns the names of all input columns present when fitting. These columns are necessary for the transform step.
- get_feature_names_out(input_features=None) ndarray [source]
Returns the names of all transformed / added columns.
Note that in sklearn the get_feature_names_out function takes the feature_names_in as an argument and determines the output feature names using the input. A fit is usually not necessary and if so a NotFittedError is raised. We just require a fit all the time and return the fitted output columns.
- Returns:
- feature_names: np.ndarray
A list with all feature names transformed or added. Note: potentially dropped features (because the feature is constant/invariant) are not included!
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, override_return_df: bool | None | str = '$UNCHANGED$') SummaryEncoder
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- override_return_dfstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
override_return_df
parameter intransform
.
- Returns:
- selfobject
The updated object.