Source code for category_encoders.m_estimate

"""M-probability estimate"""
import numpy as np
from category_encoders.ordinal import OrdinalEncoder
import category_encoders.utils as util
from sklearn.utils.random import check_random_state

__author__ = 'Jan Motl'


[docs]class MEstimateEncoder(util.BaseEncoder, util.SupervisedTransformerMixin): """M-probability estimate of likelihood. Supported targets: binomial and continuous. For polynomial target support, see PolynomialWrapper. This is a simplified version of target encoder, which goes under names like m-probability estimate or additive smoothing with known incidence rates. In comparison to target encoder, m-probability estimate has only one tunable parameter (`m`), while target encoder has two tunable parameters (`min_samples_leaf` and `smoothing`). Parameters ---------- verbose: int integer indicating verbosity of the output. 0 for none. cols: list a list of columns to encode, if None, all string columns will be encoded. drop_invariant: bool boolean for whether or not to drop encoded columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). handle_missing: str options are 'return_nan', 'error' and 'value', defaults to 'value', which returns the prior probability. handle_unknown: str options are 'return_nan', 'error' and 'value', defaults to 'value', which returns the prior probability. randomized: bool, adds normal (Gaussian) distribution noise into training data in order to decrease overfitting (testing data are untouched). sigma: float standard deviation (spread or "width") of the normal distribution. m: float this is the "m" in the m-probability estimate. Higher value of m results into stronger shrinking. M is non-negative. Example ------- >>> from category_encoders import * >>> import pandas as pd >>> from sklearn.datasets import fetch_openml >>> bunch = fetch_openml(name="house_prices", as_frame=True) >>> display_cols = ["Id", "MSSubClass", "MSZoning", "LotFrontage", "YearBuilt", "Heating", "CentralAir"] >>> y = bunch.target > 200000 >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)[display_cols] >>> enc = MEstimateEncoder(cols=['CentralAir', 'Heating']).fit(X, y) >>> numeric_dataset = enc.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Id 1460 non-null float64 1 MSSubClass 1460 non-null float64 2 MSZoning 1460 non-null object 3 LotFrontage 1201 non-null float64 4 YearBuilt 1460 non-null float64 5 Heating 1460 non-null float64 6 CentralAir 1460 non-null float64 dtypes: float64(6), object(1) memory usage: 80.0+ KB None References ---------- .. [1] A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems, equation 7, from https://dl.acm.org/citation.cfm?id=507538 .. [2] On estimating probabilities in tree pruning, equation 1, from https://link.springer.com/chapter/10.1007/BFb0017010 .. [3] Additive smoothing, from https://en.wikipedia.org/wiki/Additive_smoothing#Generalized_to_the_case_of_known_incidence_rates """ prefit_ordinal = True encoding_relation = util.EncodingRelation.ONE_TO_ONE def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True, handle_unknown='value', handle_missing='value', random_state=None, randomized=False, sigma=0.05, m=1.0): super().__init__(verbose=verbose, cols=cols, drop_invariant=drop_invariant, return_df=return_df, handle_unknown=handle_unknown, handle_missing=handle_missing) self.ordinal_encoder = None self.mapping = None self._sum = None self._count = None self.random_state = random_state self.randomized = randomized self.sigma = sigma self.m = m def _fit(self, X, y, **kwargs): self.ordinal_encoder = OrdinalEncoder( verbose=self.verbose, cols=self.cols, handle_unknown='value', handle_missing='value' ) self.ordinal_encoder = self.ordinal_encoder.fit(X) X_ordinal = self.ordinal_encoder.transform(X) # Training self.mapping = self._train(X_ordinal, y) def _transform(self, X, y=None): X = self.ordinal_encoder.transform(X) if self.handle_unknown == 'error': if X[self.cols].isin([-1]).any().any(): raise ValueError('Unexpected categories found in dataframe') # Loop over the columns and replace the nominal values with the numbers X = self._score(X, y) return X def _more_tags(self): tags = super()._more_tags() tags["predict_depends_on_y"] = True return tags def _train(self, X, y): # Initialize the output mapping = {} # Calculate global statistics self._sum = y.sum() self._count = y.count() prior = self._sum/self._count for switch in self.ordinal_encoder.category_mapping: col = switch.get('col') values = switch.get('mapping') # Calculate sum and count of the target for each unique value in the feature col stats = y.groupby(X[col]).agg(['sum', 'count']) # Count of x_{i,+} and x_i # Calculate the m-probability estimate estimate = (stats['sum'] + prior * self.m) / (stats['count'] + self.m) # Ignore unique columns. This helps to prevent overfitting on id-like columns if len(stats['count']) == self._count: estimate[:] = prior if self.handle_unknown == 'return_nan': estimate.loc[-1] = np.nan elif self.handle_unknown == 'value': estimate.loc[-1] = prior if self.handle_missing == 'return_nan': estimate.loc[values.loc[np.nan]] = np.nan elif self.handle_missing == 'value': estimate.loc[-2] = prior # Store the m-probability estimate for transform() function mapping[col] = estimate return mapping def _score(self, X, y): for col in self.cols: # Score the column X[col] = X[col].map(self.mapping[col]) # Randomization is meaningful only for training data -> we do it only if y is present if self.randomized and y is not None: random_state_generator = check_random_state(self.random_state) X[col] = (X[col] * random_state_generator.normal(1., self.sigma, X[col].shape[0])) return X