Source code for category_encoders.hashing

"""The hashing module contains all methods and classes related to the hashing trick."""

import sys
import hashlib
import category_encoders.utils as util
import multiprocessing
import pandas as pd
import math
import platform

__author__ = 'willmcginnis', 'LiuShulun'


[docs]class HashingEncoder(util.BaseEncoder, util.UnsupervisedTransformerMixin): """ A multivariate hashing implementation with configurable dimensionality/precision. The advantage of this encoder is that it does not maintain a dictionary of observed categories. Consequently, the encoder does not grow in size and accepts new values during data scoring by design. It's important to read about how max_process & max_sample work before setting them manually, inappropriate setting slows down encoding. Default value of 'max_process' is 1 on Windows because multiprocessing might cause issues, see in : https://github.com/scikit-learn-contrib/categorical-encoding/issues/215 https://docs.python.org/2/library/multiprocessing.html?highlight=process#windows Parameters ---------- verbose: int integer indicating verbosity of the output. 0 for none. cols: list a list of columns to encode, if None, all string columns will be encoded. drop_invariant: bool boolean for whether or not to drop columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). hash_method: str which hashing method to use. Any method from hashlib works. max_process: int how many processes to use in transform(). Limited in range(1, 64). By default, it uses half of the logical CPUs. For example, 4C4T makes max_process=2, 4C8T makes max_process=4. Set it larger if you have a strong CPU. It is not recommended to set it larger than is the count of the logical CPUs as it will actually slow down the encoding. max_sample: int how many samples to encode by each process at a time. This setting is useful on low memory machines. By default, max_sample=(all samples num)/(max_process). For example, 4C8T CPU with 100,000 samples makes max_sample=25,000, 6C12T CPU with 100,000 samples makes max_sample=16,666. It is not recommended to set it larger than the default value. n_components: int how many bits to use to represent the feature. By default, we use 8 bits. For high-cardinality features, consider using up-to 32 bits. Example ------- >>> from category_encoders.hashing import HashingEncoder >>> import pandas as pd >>> from sklearn.datasets import fetch_openml >>> bunch = fetch_openml(name="house_prices", as_frame=True) >>> display_cols = ["Id", "MSSubClass", "MSZoning", "LotFrontage", "YearBuilt", "Heating", "CentralAir"] >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)[display_cols] >>> y = bunch.target >>> he = HashingEncoder(cols=['CentralAir', 'Heating']).fit(X, y) >>> numeric_dataset = he.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 13 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 col_0 1460 non-null int64 1 col_1 1460 non-null int64 2 col_2 1460 non-null int64 3 col_3 1460 non-null int64 4 col_4 1460 non-null int64 5 col_5 1460 non-null int64 6 col_6 1460 non-null int64 7 col_7 1460 non-null int64 8 Id 1460 non-null float64 9 MSSubClass 1460 non-null float64 10 MSZoning 1460 non-null object 11 LotFrontage 1201 non-null float64 12 YearBuilt 1460 non-null float64 dtypes: float64(4), int64(8), object(1) memory usage: 148.4+ KB None References ---------- .. [1] Feature Hashing for Large Scale Multitask Learning, from https://alex.smola.org/papers/2009/Weinbergeretal09.pdf .. [2] Don't be tricked by the Hashing Trick, from https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087 """ prefit_ordinal = False encoding_relation = util.EncodingRelation.ONE_TO_M def __init__(self, max_process=0, max_sample=0, verbose=0, n_components=8, cols=None, drop_invariant=False, return_df=True, hash_method='md5'): super().__init__(verbose=verbose, cols=cols, drop_invariant=drop_invariant, return_df=return_df, handle_unknown="does not apply", handle_missing="does not apply") if max_process not in range(1, 128): if platform.system == 'Windows': self.max_process = 1 else: self.max_process = int(math.ceil(multiprocessing.cpu_count() / 2)) if self.max_process < 1: self.max_process = 1 elif self.max_process > 128: self.max_process = 128 else: self.max_process = max_process self.max_sample = int(max_sample) self.auto_sample = max_sample <= 0 self.data_lines = 0 self.X = None self.n_components = n_components self.hash_method = hash_method def _fit(self, X, y=None, **kwargs): pass def require_data(self, data_lock, new_start, done_index, hashing_parts, process_index): is_finished = False while not is_finished: if data_lock.acquire(): if new_start.value: end_index = 0 new_start.value = False else: end_index = done_index.value if all([self.data_lines > 0, end_index < self.data_lines]): start_index = end_index if (self.data_lines - end_index) <= self.max_sample: end_index = self.data_lines else: end_index += self.max_sample done_index.value = end_index data_lock.release() data_part = self.X.iloc[start_index: end_index] # Always get df and check it after merge all data parts data_part = self.hashing_trick(X_in=data_part, hashing_method=self.hash_method, N=self.n_components, cols=self.cols) part_index = int(math.ceil(end_index / self.max_sample)) hashing_parts.put({part_index: data_part}) is_finished = end_index >= self.data_lines if self.verbose == 5: print(f"Process - {process_index} done hashing data : {start_index} ~ {end_index}") else: data_lock.release() is_finished = True else: data_lock.release() def _transform(self, X): """ Call _transform_single_cpu() if you want to use single CPU with all samples """ self.X = X self.data_lines = len(self.X) data_lock = multiprocessing.Manager().Lock() new_start = multiprocessing.Manager().Value('d', True) done_index = multiprocessing.Manager().Value('d', int(0)) hashing_parts = multiprocessing.Manager().Queue() if self.auto_sample: self.max_sample = int(self.data_lines / self.max_process) if self.max_sample == 0: self.max_sample = 1 if self.max_process == 1: self.require_data(data_lock, new_start, done_index, hashing_parts, process_index=1) else: n_process = [] for thread_idx in range(self.max_process): process = multiprocessing.Process(target=self.require_data, args=(data_lock, new_start, done_index, hashing_parts, thread_idx + 1)) process.daemon = True n_process.append(process) for process in n_process: process.start() for process in n_process: process.join() data = self.X if self.max_sample == 0 or self.max_sample == self.data_lines: if hashing_parts: data = list(hashing_parts.get().values())[0] else: list_data = {} while not hashing_parts.empty(): list_data.update(hashing_parts.get()) sort_data = [] for part_index in sorted(list_data): sort_data.append(list_data[part_index]) if sort_data: data = pd.concat(sort_data) return data def _transform_single_cpu(self, X, override_return_df=False): """Perform the transformation to new categorical data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- p : array, shape = [n_samples, n_numeric + N] Transformed values with encoding applied. """ if self._dim is None: raise ValueError('Must train encoder before it can be used to transform data.') # first check the type X = util.convert_input(X) # then make sure that it is the right size if X.shape[1] != self._dim: raise ValueError(f'Unexpected input dimension {X.shape[1]}, expected {self._dim}') if not list(self.cols): return X X = self.hashing_trick(X, hashing_method=self.hash_method, N=self.n_components, cols=self.cols) if self.drop_invariant: X = X.drop(columns=self.invariant_cols) if self.return_df or override_return_df: return X else: return X.to_numpy()
[docs] @staticmethod def hashing_trick(X_in, hashing_method='md5', N=2, cols=None, make_copy=False): """A basic hashing implementation with configurable dimensionality/precision Performs the hashing trick on a pandas dataframe, `X`, using the hashing method from hashlib identified by `hashing_method`. The number of output dimensions (`N`), and columns to hash (`cols`) are also configurable. Parameters ---------- X_in: pandas dataframe description text hashing_method: string, optional description text N: int, optional description text cols: list, optional description text make_copy: bool, optional description text Returns ------- out : dataframe A hashing encoded dataframe. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009). Feature Hashing for Large Scale Multitask Learning. Proc. ICML. """ if hashing_method not in hashlib.algorithms_available: raise ValueError(f"Hashing Method: {hashing_method} not Available. " f"Please use one from: [{', '.join([str(x) for x in hashlib.algorithms_available])}]") if make_copy: X = X_in.copy(deep=True) else: X = X_in if cols is None: cols = X.columns def hash_fn(x): tmp = [0 for _ in range(N)] for val in x.array: if val is not None: hasher = hashlib.new(hashing_method) if sys.version_info[0] == 2: hasher.update(str(val)) else: hasher.update(bytes(str(val), 'utf-8')) tmp[int(hasher.hexdigest(), 16) % N] += 1 return tmp new_cols = [f'col_{d}' for d in range(N)] X_cat = X.loc[:, cols] X_num = X.loc[:, [x for x in X.columns if x not in cols]] X_cat = X_cat.apply(hash_fn, axis=1, result_type='expand') X_cat.columns = new_cols X = pd.concat([X_cat, X_num], axis=1) return X