Source code for category_encoders.backward_difference

"""Backward difference contrast encoding"""

from patsy.contrasts import Diff, ContrastMatrix
import numpy as np

from category_encoders.base_contrast_encoder import BaseContrastEncoder

__author__ = 'paulwestenthanner'


[docs]class BackwardDifferenceEncoder(BaseContrastEncoder): """Backward difference contrast coding for encoding categorical variables. Parameters ---------- verbose: int integer indicating verbosity of the output. 0 for none. cols: list a list of columns to encode, if None, all string columns will be encoded. drop_invariant: bool boolean for whether or not to drop columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). handle_unknown: str options are 'error', 'return_nan', 'value', and 'indicator'. The default is 'value'. Warning: if indicator is used, an extra column will be added in if the transform matrix has unknown categories. This can cause unexpected changes in dimension in some cases. handle_missing: str options are 'error', 'return_nan', 'value', and 'indicator'. The default is 'value'. Warning: if indicator is used, an extra column will be added in if the transform matrix has nan values. This can cause unexpected changes in dimension in some cases. Example ------- >>> from category_encoders import * >>> import pandas as pd >>> from sklearn.datasets import fetch_openml >>> bunch = fetch_openml(name="house_prices", as_frame=True) >>> display_cols = ["Id", "MSSubClass", "MSZoning", "LotFrontage", "YearBuilt", "Heating", "CentralAir"] >>> y = bunch.target >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)[display_cols] >>> enc = BackwardDifferenceEncoder(cols=['CentralAir', 'Heating']).fit(X, y) >>> numeric_dataset = enc.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 intercept 1460 non-null int64 1 Id 1460 non-null float64 2 MSSubClass 1460 non-null float64 3 MSZoning 1460 non-null object 4 LotFrontage 1201 non-null float64 5 YearBuilt 1460 non-null float64 6 Heating_0 1460 non-null float64 7 Heating_1 1460 non-null float64 8 Heating_2 1460 non-null float64 9 Heating_3 1460 non-null float64 10 Heating_4 1460 non-null float64 11 CentralAir_0 1460 non-null float64 dtypes: float64(10), int64(1), object(1) memory usage: 137.0+ KB None References ---------- .. [1] Contrast Coding Systems for Categorical Variables, from https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/ .. [2] Gregory Carey (2003). Coding Categorical Variables, from http://ibgwww.colorado.edu/~carey/p5741ndir/Coding_Categorical_Variables.pdf """ def get_contrast_matrix(self, values_to_encode: np.array) -> ContrastMatrix: return Diff().code_without_intercept(values_to_encode)