TemplateEstimator#
- class skltemplate.TemplateEstimator(demo_param='demo_param')#
A template estimator to be used as a reference implementation.
For more information regarding how to build your own estimator, read more in the User Guide.
- Parameters:
- demo_paramstr, default=’demo_param’
A parameter used for demonstration of how to pass and store parameters.
Examples
>>> from skltemplate import TemplateEstimator >>> import numpy as np >>> X = np.arange(100).reshape(100, 1) >>> y = np.zeros((100, )) >>> estimator = TemplateEstimator() >>> estimator.fit(X, y) TemplateEstimator()
- Attributes:
Methods
fit
(X, y)A reference implementation of a fitting function.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)A reference implementation of a predicting function.
set_params
(**params)Set the parameters of this estimator.
- fit(X, y)#
A reference implementation of a fitting function.
- Parameters:
- X{array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples.
- yarray-like, shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in regression).
- Returns:
- selfobject
Returns self.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- predict(X)#
A reference implementation of a predicting function.
- Parameters:
- X{array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples.
- Returns:
- yndarray, shape (n_samples,)
Returns an array of ones.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.