metric-learn
0.7.0
  • Getting started
  • User Guide
    • 1. What is Metric Learning?
    • 2. Supervised Metric Learning
    • 3. Weakly Supervised Metric Learning
    • 4. Unsupervised Metric Learning
    • 5. Preprocessor
  • Package Contents
  • Examples
metric-learn
  • User guide: contents
  • View page source

User Guide

  • 1. What is Metric Learning?
    • 1.1. Problem Setting
    • 1.2. Mahalanobis Distances
    • 1.3. Use-cases
    • 1.4. Further reading
  • 2. Supervised Metric Learning
    • 2.1. General API
      • 2.1.1. Input data
      • 2.1.2. Fit, transform, and so on
      • 2.1.3. Scikit-learn compatibility
    • 2.2. Algorithms
      • 2.2.1. LMNN
      • 2.2.2. NCA
      • 2.2.3. LFDA
      • 2.2.4. MLKR
      • 2.2.5. Supervised versions of weakly-supervised algorithms
  • 3. Weakly Supervised Metric Learning
    • 3.1. General API
      • 3.1.1. Input data
        • 3.1.1.1. Basic form
        • 3.1.1.2. 3D array of tuples
        • 3.1.1.3. 2D array of indicators + preprocessor
      • 3.1.2. Fit, transform, and so on
      • 3.1.3. Prediction and scoring
      • 3.1.4. Scikit-learn compatibility
    • 3.2. Learning on pairs
      • 3.2.1. Fitting
      • 3.2.2. Prediction
        • 3.2.2.1. Prediction threshold
      • 3.2.3. Scoring
      • 3.2.4. Algorithms
        • 3.2.4.1. ITML
        • 3.2.4.2. SDML
        • 3.2.4.3. RCA
        • 3.2.4.4. MMC
    • 3.3. Learning on triplets
      • 3.3.1. Fitting
      • 3.3.2. Prediction
      • 3.3.3. Scoring
      • 3.3.4. Algorithms
        • 3.3.4.1. SCML
    • 3.4. Learning on quadruplets
      • 3.4.1. Fitting
      • 3.4.2. Prediction
      • 3.4.3. Scoring
      • 3.4.4. Algorithms
        • 3.4.4.1. LSML
  • 4. Unsupervised Metric Learning
    • 4.1. Algorithms
      • 4.1.1. Covariance
  • 5. Preprocessor
    • 5.1. Array-like
    • 5.2. Callable
Previous Next

© Copyright 2015-2023, CJ Carey, Yuan Tang, William de Vazelhes, Aurélien Bellet and Nathalie Vauquier.

Built with Sphinx using a theme provided by Read the Docs.