metric-learn
0.7.0
Getting started
User Guide
1. What is Metric Learning?
2. Supervised Metric Learning
3. Weakly Supervised Metric Learning
4. Unsupervised Metric Learning
5. Preprocessor
Package Contents
Examples
metric-learn
User guide: contents
View page source
User Guide
1. What is Metric Learning?
1.1. Problem Setting
1.2. Mahalanobis Distances
1.3. Use-cases
1.4. Further reading
2. Supervised Metric Learning
2.1. General API
2.1.1. Input data
2.1.2. Fit, transform, and so on
2.1.3. Scikit-learn compatibility
2.2. Algorithms
2.2.1.
LMNN
2.2.2.
NCA
2.2.3.
LFDA
2.2.4.
MLKR
2.2.5. Supervised versions of weakly-supervised algorithms
3. Weakly Supervised Metric Learning
3.1. General API
3.1.1. Input data
3.1.1.1. Basic form
3.1.1.2. 3D array of tuples
3.1.1.3. 2D array of indicators + preprocessor
3.1.2. Fit, transform, and so on
3.1.3. Prediction and scoring
3.1.4. Scikit-learn compatibility
3.2. Learning on pairs
3.2.1. Fitting
3.2.2. Prediction
3.2.2.1. Prediction threshold
3.2.3. Scoring
3.2.4. Algorithms
3.2.4.1.
ITML
3.2.4.2.
SDML
3.2.4.3.
RCA
3.2.4.4.
MMC
3.3. Learning on triplets
3.3.1. Fitting
3.3.2. Prediction
3.3.3. Scoring
3.3.4. Algorithms
3.3.4.1.
SCML
3.4. Learning on quadruplets
3.4.1. Fitting
3.4.2. Prediction
3.4.3. Scoring
3.4.4. Algorithms
3.4.4.1.
LSML
4. Unsupervised Metric Learning
4.1. Algorithms
4.1.1. Covariance
5. Preprocessor
5.1. Array-like
5.2. Callable